分享
  • 收藏
    X
    EGFR基因
    695
    1

    EGFR基因检测涵盖但不限于exon19del,L858R,T790M,exon20ins,G719X,E709K,S768I,L861Q,L792H,G796R,C797S等突变以及拷贝数扩增。
    携带某些EGFR突变(如19号外显子缺失,L858R,L861,G719,S768等)的肿瘤对一/二代EGFR-TKI敏感。携带某些EGFR突变(如T790M)的肿瘤可能对一/二代EGFR-TKI耐药,但对三代EGFR-TKI敏感。携带EGFR20号外显子插入突变的肿瘤可能对现有EGFR-TKI都不敏感,针对性TKI正在早期研发中。携带EGFR扩增的肺鳞癌可能对抗-EGFR抗体敏感。

    突变丰度指在该位点所有的等位基因中,突变的等位基因的占比(相对野生型等位基因)。例如,突变丰度40%意为该位点含有40%的突变等位基因和60%的野生型等位基因。
    EGFR是一个表皮生长因子受体,为跨膜酪氨酸受体激酶的一种。EGFR突变是肺癌中一个最主要的分子亚型。该基因的激活性突变可以促进细胞的异常增殖、分化以及血管增生,并能抑制肿瘤细胞的凋亡。据TCGA与COSMIC数据库报导,EGFR突变占西方非小细胞肺癌患者的10~20%。这一比例在东亚,女性,无吸烟史肺腺癌患者中尤其高,可以达到50%左右。

    图一:EGFR信号传导通路

    临床上多见的EGFR突变集中出现在18到21号外显子中,这段序列编码EGFR的激酶区域。2004年开始的多项研究发现,肺癌中EGFR突变与EGFR靶向抑制剂疗效密切相关。国际上多个大型临床试验已证实EGFR突变肺癌患者是小分子抑制剂gefitinib(吉非替尼,易瑞沙)、erlotinib(厄洛替尼,特罗凯)、icotinib(埃克替尼,凯美纳)的敏感人群。EGFR突变检测已经被写入美国国家综合癌症网络(NCCN)的肺癌治疗指南。EGFR突变还存在于其他肿瘤。EGFR变异形式还包括EGFR拷贝数增加和高表达,这些变异在临床药物特别是单克隆抗体中的研究正在进行中。
    EGFR的突变多为杂合性的,常见的EGFR突变包括以下几种:


    图二:EGFR基因上的常见突变分布


    参考文献:
    1. 美国国家综合癌症网络(NCCN®) 肿瘤临床实践指南。
    2. Lovly, C., L. Horn, W. Pao. (2016). Molecular Profiling of Lung Cancer. My Cancer Genome https://www.mycancergenome.org/content/disease/lung-cancer/ (Updated March 28).
    3. Shih, J. Y., Gow, C. H., and Yang, P. C. (2005). EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. The New England journal of medicine 353, 207-208.
    4. Tsao, M. S., Sakurada, A., Cutz, J. C., Zhu, C. Q., Kamel-Reid, S., Squire, J., Lorimer, I., Zhang, T., Liu, N., Daneshmand, M., et al. (2005). Erlotinib in lung cancer - molecular and clinical predictors of outcome. The New England journal of medicine 353, 133-144.
    5. Paz-Ares L, Socinski MA, Shahidi J, Hozak RR, Soldatenkova V, Kurek R, Varella-Garcia M, Thatcher N, Hirsch FR.(2016).Correlation of EGFR-expression with safety and efficacy outcomes in SQUIRE: a randomized, multicenter, open-label, phase III study of gemcitabine-cisplatin plus necitumumab versus gemcitabine-cisplatin alone in the first-line treatment of patients with stage IV squamous non-small-cell lung cancer. Ann Oncol.27(8):1573-9.
    6. Kwak, E. L., Bang, Y. J., Camidge, D. R., Shaw, A. T., Solomon, B., Maki, R. G., Ou, S. H., Dezube, B. J., Janne, P. A., Costa, D. B., et al. (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. The New England journal of medicine 363, 1693-1703.
    7. Drilon, A., Wang, L., Hasanovic, A., Suehara, Y., Lipson, D., Stephens, P., Ross, J., Miller, V., Ginsberg, M., Zakowski, M. F., et al. (2013). Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer discovery 3, 630-635.
    8. Shaw, A. T., Kim, D. W., Mehra, R., Tan, D. S., Felip, E., Chow, L. Q., Camidge, D. R., Vansteenkiste, J., Sharma, S., De Pas, T., et al. (2014). Ceritinib in ALK-rearranged non-small-cell lung cancer. The New England journal of medicine 370, 1189-1197.
    9. Shaw, A. T., Ou, S. H., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., Riely, G. J., Varella-Garcia, M., Shapiro, G. I., Costa, D. B., et al. (2014). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England journal of medicine 371, 1963-1971.
    10. Solomon, B. J., Mok, T., Kim, D. W., Wu, Y. L., Nakagawa, K., Mekhail, T., Felip, E., Cappuzzo, F., Paolini, J., Usari, T., et al. (2014). First-line crizotinib versus chemotherapy in ALK-positive lung cancer. The New England journal of medicine 371, 2167-2177.
    11. Frampton, G. M., Ali, S. M., Rosenzweig, M., Chmielecki, J., Lu, X., Bauer, T. M., Akimov, M., Bufill, J. A., Lee, C., Jentz, D., et al. (2015). Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer discovery 5, 850-859.
    12. Gautschi, O., Milia, J., Cabarrou, B., Bluthgen, M. V., Besse, B., Smit, E. F., Wolf, J., Peters, S., Fruh, M., Koeberle, D., et al. (2015). Targeted Therapy for Patients with BRAF-Mutant Lung Cancer: Results from the European EURAF Cohort. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 10, 1451-1457.
    13. Hyman, D. M., Puzanov, I., Subbiah, V., Faris, J. E., Chau, I., Blay, J. Y., Wolf, J., Raje, N. S., Diamond, E. L., Hollebecque, A., et al. (2015). Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. The New England journal of medicine 373, 726-736.
    14. Janne, P. A., Yang, J. C., Kim, D. W., Planchard, D., Ohe, Y., Ramalingam, S. S., Ahn, M. J., Kim, S. W., Su, W. C., Horn, L., et al. (2015). AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. The New England journal of medicine 372, 1689-1699.
    15. Paik, P. K., Drilon, A., Fan, P. D., Yu, H., Rekhtman, N., Ginsberg, M. S., Borsu, L., Schultz, N., Berger, M. F., Rudin, C. M., and Ladanyi, M. (2015). Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer discovery 5, 842-849.
    16. Sequist, L. V., Soria, J. C., Goldman, J. W., Wakelee, H. A., Gadgeel, S. M., Varga, A., Papadimitrakopoulou, V., Solomon, B. J., Oxnard, G. R., Dziadziuszko, R., et al. (2015). Rociletinib in EGFR-mutated non-small-cell lung cancer. The New England journal of medicine 372, 1700-1709.
    17. Swanton, C., and Govindan, R. (2016). Clinical Implications of Genomic Discoveries in Lung Cancer. The New England journal of medicine 374, 1864-1873.
    18. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S.(2008).Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol.(10):962-72.
    19. Mengoli MC, Barbieri F, Bertolini F, Tiseo M, Rossi G.(2016).K-RAS mutations indicating primary resistance to crizotinib in ALK-rearranged adenocarcinomas of the lung: Report of two cases and review of the literature. Lung Cancer.93:55-8.
    20. Goldman JW, Shi P, Reck M, Paz-Ares L, Koustenis A, Hurt KC. (2016). Treatment Rationale and Study Design for the JUNIPER Study: A Randomized Phase III Study of Abemaciclib With Best Supportive Care Versus Erlotinib With Best Supportive Care in Patients With Stage IV Non-Small-Cell Lung Cancer With a Detectable KRAS Mutation Whose Disease Has Progressed After Platinum-Based Chemotherapy. Clin Lung Cancer. 17(1):80-4.
    21. Jänne PA, Smith I, McWalter G, Mann H, Dougherty B, Walker J, Orr MC, Hodgson DR, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios CH, Franke FA, Crinò L, Smith P.(2015). Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer. Br J Cancer. 14;113(2):199-203.

    6
    打赏
    收藏
    点击回复
        全部留言
    • 1
    • 药优 管理员 2020-06-07 20:02 20:021楼

      与野生型EGFR(EGFR-WT)相比,具有EGFR突变(EGFR-mut)的晚期NSCLC患者的无进展生存期较长。然而,EGFR突变以及突变亚型在早期肺癌预后中的意义尚不清楚。Takamochi及其同事开展了一项研究探讨EGFR-mut和特异性EGFR-mut在手术切除肺腺癌患者预后中的价值。
      他们回顾性分析了939例患者的资料,发现与EGFR-WT相比,EGFR-mut患者的5年总生存期(OS)较长相关。点突变(21号外显子 L858R点突变(L858R)与19号外显子缺失(19-del))对患者的预后并无影响。


      该研究值得我们进行探讨。首先,该研究纳入的肺腺癌(45% EGFR-mut)患者的数量(939)较多。其次,研究者排除了围手术期治疗的患者,有助于确定不接受酪氨酸激酶抑制(TKI)治疗患者中EGFR-mut的预后作用。作者的研究纠正了荟萃分析的结果即EGFR-mut与患者的预后差相关,在荟萃分析中纳入的研究大多样本量小,检验效能不足。
      但是,在16项研究中最大的两项研究报告显示,EGFR-mut与患者的生存获益相关。 D'Angelo和同事报道了具有EGFR突变的I-III期肺腺癌在OS上具有优势。该研究中很大一部分患者接受辅助细胞毒性化疗和EGFR-TKI治疗。
      Izar及其同事报道的307例患者表明,EGFR-mut与改善患者OS和无病生存期相关。该研究中没有患者接受辅助TKI或细胞毒性化疗。尽管在人口统计学,分期和辅助治疗方面存在差异,但是基于EGFR检测和分层的结论比较相似。


      ENSURE研究(厄洛替尼 vs 细胞毒性化疗)发现19-del 相比L858R在PFS上具有显著优势。一项小型回顾性研究发现相比L-858R,19-del可改善患者的OS。Takamochi及其同事报道222例(53%)L858R与161例(39%)19-del患者相比并无生存优势。14例(3%)患者存在T790M突变,且常伴有额外的突变。


      EGFR-mut的临床意义:首先,几乎所有患者多会出现TKI耐药。第一代TKI可逆性结合,而第三代TKI不可逆地结合酪氨酸激酶结构域,亲和力>100倍。随着第三代TKI的研究报道,点突变的治疗意义和预后价值可能会发生变化。
      由于“复杂的致癌机制”研究者推测,不同于依赖于特定驱动基因突变的EGFR-mut,EGFR-WT肿瘤中可能同时存在多个驱动基因突变的。另外,与吸烟者相比,非吸烟者性腺癌中出现新抗原表位的频率的较低。这意味着慢性吸烟会导致数千种体细胞突变,可能影响多种致癌途径,从而减少靶向单一突变的机会。


      Takamochi及其同事建议将EGFR状态纳入未来分期指南。鉴于TKI治疗的迅速发展和肺癌分子生物学知识的增加,分期系统中亚分类可能需要不断的改进,将来应在分期中得到充分反映。


      参考文献:
      1. Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29(21):2866-2874.
      2. Zhang Z, Wang T, Zhang J, et al. Prognostic value of epidermal growth factor receptor mutations in resected nonsmall cell lung cancer: a systematic review with meta-analysis. PLoS One. 2014;9(8):e106053.
      3. D'Angelo SP, Janjigian YY, Ahye N, et al. Distinct clinical course of EGFR-mutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J Thorac Oncol.
      2012;7(12):1815-1822.
      4. Wu YL, Zhou C, Liam CK, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 2015;26(9):1883-1889.
      5. Riely GJ, Pao W, Pham D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006;12(3 Pt 1):839-844.
      6. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer associated genes. Nature. 2013;499(7457):214-218.
      7. Campbell JD, Alexandrov A, Kim J, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48(6):607-616.


    更多回复
    热门分类
    推荐内容
    扫一扫访问手机版